User Tools

Site Tools


pvs:libraries

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
pvs:libraries [2016/08/24 22:10]
jonathan
pvs:libraries [2016/09/13 18:06] (current)
jonathan
Line 1: Line 1:
 ====== Reals ====== ====== Reals ======
  
-Hypatheon is useful for browsing libraries. In the Prelude, we have real_axioms,​ reals and real_props. For example, in real_props we have the Lemma "​both_sides_div_pos_neg_ge1"​ which allows us to divide both sides of an inequality ''​x >= y''​ by the same value ''​n0z:​ VAR nonzero_real'':​+Hypatheon is useful for browsing libraries. In the Prelude, we have  
 +  * real_axioms, ​ 
 +  * reals 
 +  * real_props 
 +  * extra_real_props 
 + 
 +For example, in real_props we have the Lemma "​both_sides_div_pos_neg_ge1"​ which allows us to divide both sides of an inequality ''​x >= y''​ by the same value ''​n0z:​ VAR nonzero_real'':​
  
 <​code>​ <​code>​
Line 14: Line 20:
  
 There are also libraries of decision procedures such as  There are also libraries of decision procedures such as 
-  * [[http://​shemesh.larc.nasa.gov/​people/​cam/​Sturm/​|sturm]]:​ Sturm'​s Theorem is a well-known result in real algebraic geometry that provides a function that computes the number of roots of a univariate polynomial in a semi-open interval, and is included in the NASA PVS libraries. ​+  * [[http://​shemesh.larc.nasa.gov/​people/​cam/​Sturm/​|sturm]]:​ Sturm'​s Theorem is a well-known result in real algebraic geometry that provides a function that computes the number of roots of a univariate polynomial in a semi-open interval, and is included in the NASA PVS libraries. Strategy ''​mono-poly''​ automatically discharges monotinicity properties of polynomials on a real interval.
   * [[http://​shemesh.larc.nasa.gov/​people/​cam/​Tarski/​|tarski]].Tarski'​s Theorem is a generalization of Sturm'​s theorem that provides a linear relationship between functions known as Tarski queries and cardinalities of certain sets. It's also in the NASA library. ​   * [[http://​shemesh.larc.nasa.gov/​people/​cam/​Tarski/​|tarski]].Tarski'​s Theorem is a generalization of Sturm'​s theorem that provides a linear relationship between functions known as Tarski queries and cardinalities of certain sets. It's also in the NASA library. ​
  
Line 20: Line 26:
   IMPORTING Sturm@strategies   IMPORTING Sturm@strategies
   IMPORTING Tarski@strategies   IMPORTING Tarski@strategies
-(Tarski is heavy so wait for it to load and finish).+(Tarski is heavy so wait for it to load and finish). Note that the ''​(eval-formula)''​ from PVSio can also be used to prove the D2 example
  
 ===== Example Theory ===== ===== Example Theory =====
  
-<​file>​ +<​file ​text real.pvs
-logic : THEORY+real : THEORY
 BEGIN BEGIN
 %(sturm) and (mono-poly) incorporate some nice decision procedures ​ %(sturm) and (mono-poly) incorporate some nice decision procedures ​
Line 77: Line 83:
  
  
-END logic+END real
 </​file>​ </​file>​
  
 <​code>​ <​code>​
- Proof summary for theory ​logic+ Proof summary for theory ​real
     conja1................................proved - complete ​  ​[shostak](0.06 s)     conja1................................proved - complete ​  ​[shostak](0.06 s)
     conja2................................proved - complete ​  ​[shostak](0.39 s)     conja2................................proved - complete ​  ​[shostak](0.39 s)
Line 96: Line 102:
 Grand Totals: 10 proofs, 10 attempted, 9 succeeded (1.81 s) Grand Totals: 10 proofs, 10 attempted, 9 succeeded (1.81 s)
 </​code>​ </​code>​
- 
  
pvs/libraries.1472076644.txt.gz · Last modified: 2016/08/24 22:10 by jonathan