User Tools

Site Tools


pvs:libraries

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
pvs:libraries [2016/08/24 21:36]
jonathan
pvs:libraries [2016/09/13 18:06] (current)
jonathan
Line 1: Line 1:
 ====== Reals ====== ====== Reals ======
  
-Hypatheon is useful for browsing libraries. In the Prelude, we have real_axioms,​ reals and real_props. For example, in real_props we have the Lemma "​both_sides_div_pos_neg_ge1"​ which allows us to divide both sides of an inequality ''​x >= y''​ by the same value ''​n0z:​ VAR nonzero_real'':​+Hypatheon is useful for browsing libraries. In the Prelude, we have  
 +  * real_axioms, ​ 
 +  * reals 
 +  * real_props 
 +  * extra_real_props 
 + 
 +For example, in real_props we have the Lemma "​both_sides_div_pos_neg_ge1"​ which allows us to divide both sides of an inequality ''​x >= y''​ by the same value ''​n0z:​ VAR nonzero_real'':​
  
 <​code>​ <​code>​
Line 10: Line 16:
  
 This can be used to show, e.g. that ''​x*x >= x'',​ under the right assumptions. ​ This can be used to show, e.g. that ''​x*x >= x'',​ under the right assumptions. ​
 +
 +The [[http://​shemesh.larc.nasa.gov/​people/​bld/​manip.html|manip]] package introduces additional rules. For example, in Hypatheon, select Type = Defined_rule and search for ''​div-by''​. ​
  
 There are also libraries of decision procedures such as  There are also libraries of decision procedures such as 
-  * [[http://​shemesh.larc.nasa.gov/​people/​cam/​Sturm/​|sturm]]:​ Sturm'​s Theorem is a well-known result in real algebraic geometry that provides a function that computes the number of roots of a univariate polynomial in a semi-open interval, and is included in the NASA PVS libraries. ​+  * [[http://​shemesh.larc.nasa.gov/​people/​cam/​Sturm/​|sturm]]:​ Sturm'​s Theorem is a well-known result in real algebraic geometry that provides a function that computes the number of roots of a univariate polynomial in a semi-open interval, and is included in the NASA PVS libraries. Strategy ''​mono-poly''​ automatically discharges monotinicity properties of polynomials on a real interval.
   * [[http://​shemesh.larc.nasa.gov/​people/​cam/​Tarski/​|tarski]].Tarski'​s Theorem is a generalization of Sturm'​s theorem that provides a linear relationship between functions known as Tarski queries and cardinalities of certain sets. It's also in the NASA library. ​   * [[http://​shemesh.larc.nasa.gov/​people/​cam/​Tarski/​|tarski]].Tarski'​s Theorem is a generalization of Sturm'​s theorem that provides a linear relationship between functions known as Tarski queries and cardinalities of certain sets. It's also in the NASA library. ​
 +
 +These libraries can be imported as
 +  IMPORTING Sturm@strategies
 +  IMPORTING Tarski@strategies
 +(Tarski is heavy so wait for it to load and finish). Note that the ''​(eval-formula)''​ from PVSio can also be used to prove the D2 example. ​
 +
 +===== Example Theory =====
 +
 +<file text real.pvs>​
 +real : THEORY
 +BEGIN
 +%(sturm) and (mono-poly) incorporate some nice decision procedures ​
 +IMPORTING Sturm@strategies
 +%IMPORTING Tarski@strategies
 +
 +% Subtypes D1 and D2 which is the set {1,2,3,4,5}
 +D1: TYPE = {i: nat | i = 1 OR i= 2 OR i=3 OR i=4 OR i=5}
 +D2: TYPE = {i: nat | 1 <= i AND i <= 5}
 +
 +conja1: CONJECTURE (FORALL (x:D1) : x*x >= x)
 +
 +% The abobe proves wih (grind) or the proof below (saved with with C-c 2p):
 +%|- conja1 : PROOF
 +%|- (then (skeep) (typepred "​x"​) (assert))
 +%|- QED
 +
 +conja2: CONJECTURE (FORALL (x:D2) : x*x >= x)
 +
 +%|- conja2 : PROOF
 +%|- (then (skeep) (lemma "​both_sides_div_pos_neg_ge1"​) (grind))
 +%|- QED
 +% Lemma is: FORALL (n0z: nonzero_real,​ x, y: real):
 +%         IF n0z > 0 THEN x/n0z >= y/n0z ELSE y/n0z >= x/n0z ENDIF
 +%          IFF x >= y
 +
 +% We could also prove the above automatically in one step using (sturm). ​
 +
 +% The following should not prove because e.g. x = 0.5 is a counter-example
 +conjb: CONJECTURE (FORALL (x:real) : x^2 >= x)
 +
 +conjc: CONJECTURE (FORALL (x: real): x >= 1.0 IMPLIES x * x >= x)
 +
 +% (sturm) proves the above automatically.
 +% Alternatively,​ manip introduces additional rules such as (div-by):
 +%|- conj4 : PROOF
 +%|- (then (skeep) (div-by 1 "​x"​))
 +%|- QED
 +
 +  example_14 : LEMMA 
 +    FORALL (x:real) : x ## [| 0, oo |] IMPLIES -x^3 <= 0
 +%|- example_14 : PROOF
 +%|- (sturm)
 +%|- QED
 +
 +  mono_example_4:​ LEMMA
 +    FORALL (x,y:real): x /= y IMPLIES x^3 /= y^3
 +%|- mono_example_4 : PROOF
 +%|- (mono-poly)
 +%|- QED
 +
 +
 +END real
 +</​file>​
 +
 +<​code>​
 + Proof summary for theory real
 +    conja1................................proved - complete ​  ​[shostak](0.06 s)
 +    conja2................................proved - complete ​  ​[shostak](0.39 s)
 +    conjb_TCC1............................proved - complete ​  ​[shostak](0.00 s)
 +    conjb.................................unfinished ​         [shostak](0.03 s)
 +    conjc.................................proved - complete ​  ​[shostak](0.41 s)
 +    example_14_TCC1.......................proved - complete ​  ​[shostak](0.01 s)
 +    example_14............................proved - complete ​  ​[shostak](0.36 s)
 +    mono_example_4_TCC1...................proved - complete ​  ​[shostak](0.01 s)
 +    mono_example_4_TCC2...................proved - complete ​  ​[shostak](0.00 s)
 +    mono_example_4........................proved - complete ​  ​[shostak](0.54 s)
 +    Theory totals: 10 formulas, 10 attempted, 9 succeeded (1.81 s)
 +
 +Grand Totals: 10 proofs, 10 attempted, 9 succeeded (1.81 s)
 +</​code>​
 +
pvs/libraries.1472074612.txt.gz · Last modified: 2016/08/24 21:36 by jonathan