
RTF Views generated by EiffelStudio IDE 

Cluster View
class ACCOUNT General

cluster: model
description: 

"A bank account with deposit and withdraw 
operations. A bank account may not have a negative balance."

create: new
Ancestors

ANY
Queries

balance: VALUE
is_equal (other: ACCOUNT): BOOLEAN
name: STRING

Commands
deposit (v: VALUE)
withdraw (v: VALUE)

Constraints
balance non negative

Contract View (Short)
note

description: "[
A bank account with deposit and withdraw 
operations. A bank account may not have a negative balance.

]"

class interface ACCOUNT create 
new

feature -- queries
name: STRING
balance: VALUE

feature -- Commands
deposit (v: VALUE)

require
positive: v > v.zero

ensure
correct_balance: balance = old balance + v

withdraw (v: VALUE)
require

v > v.zero
balance - v >= v.zero

ensure
correct_balance: balance = old balance - v

feature -- equality
is_equal (other: like Current): BOOLEAN

-- Is other value equal to current
ensure then

Result = (name ~ other.name and balance = other.balance)
invariant

balance_non_negative: balance >= balance.zero

end -- class ACCOUNT



Text View (Short)
note

description: "[
A bank account with deposit and withdraw 
operations. A bank account may not have a negative balance.

]"

class ACCOUNT inherit
ANY redefine is_equal end

create 
new

feature {NONE} -- create
new (a_name: STRING_8)

-- create an account for a_name with zero balance
do

create name.make_from_string (a_name)
ensure

created: name ~ a_name
balance_zero: balance = balance.zero

end

feature -- Queries
name: STRING
balance: VALUE

feature -- Commands
deposit (v: VALUE)

require
positive: v > v.zero

do
balance := balance + v

ensure
correct_balance: balance = old balance + v

end

withdraw (v: VALUE)
require

positive: v > v.zero
balance - v >= v.zero

do
balance := balance - v

ensure
correct_balance: balance = old balance - v

end

feature -- Queries of Comparison

is_equal (other: like Current): BOOLEAN
-- Is other value equal to current

do
Result := name ~ other.name and balance = other.balance

ensure then
Result = (name ~ other.name and balance = other.balance)

end

invariant
balance_non_negative: balance >= balance.zero

end -- class ACCOUNT


