Specifications and Implementation in Eiffel

Jonathan S. Ostroff *

22/06,/2020

Contents

[1 Significance of Specifications and Formal Methods|

2 Example: Specifying and verifying Euclid’s algorithm|
[2.1 Testing can show the presence of bugs, but not their absence|

[3 Correctness is relative to a Specification|

[4 Hoare Logic|

E P Fof T. — C l
[>.1 Prove that the invariant :nv is established initially|.
[5.2 Prove that each iteration of the loop preserves nvf.
[>.3 Prove that exit condition and invariant entails postcondition|

(.4 Show that the variant decreases in each iterationl.

6 Eiffel: Exhaustive Runtime Assertion Checking|
[6.1 Specification Tests| L.

(7 Why Design by Contract?|

[8 The Academy and Industry|
[8.1 Foundational Principles in CS/software engineering education]

[A_Contract View of class EUCLID for GCDI

*EECS, Lassonde School of Engineering, York University.

1

11
11

12

13
14

14

Greatest Common Divider in Eiffel Page 2 of

1 Significance of Specifications and Formal Methods

It is non-trivial to develop reliable software products for safety-critical systems such as med-
ical devices or nuclear power generation, concurrent systems or cybersecurity. For example:

Cybersecurity is everyone’s problem. The target may be the electric grid, govern-
ment systems storing sensitive personnel data, intellectual property in the defense
industrial base, or banks and the financial system. Adversaries range from small-
time criminals to nation states and other determined opponents who will explore
an ingenious range of attack strategies. And the damage may be tallied in dol-
lars, in strategic advantage, or in human lives. Systematic, secure system design
is urgently needed, and we believe that rigorous formal methods are essential for
substantial improvements.

Formal methods enable reasoning from logical or mathematical specifications of
the behaviors of computing devices or processes; they offer rigorous proofs that
all system behaviors meet some desirable property. They are crucial for security
goals, because they can show that no attack strategy in a class of strategies will
cause a system to misbehave. Without requiring piecemeal enumeration, they rule
out a range of attacks. They offer other benefits too: Formal specifications tell an
implementer unambiguously what to produce, and they tell the subsequent user
or integrator of a component what to rely on it to do. Since many vulnerabilities
arise from misunderstandings and mismatches as components are integrated, the
payoff from rigorous interface specifications is largeE]

2 Example: Specifying and verifying Euclid’s algorithm

To understand the use of specifications and formal methods, we examine a simple example.
In mathematics, the Euclidean algorithm is an efficient method for computing the greatest
common divisor (GCD) of two integers, the largest number that divides them both without a
remainder. It is named after the ancient Greek mathematician Euclid, who first described it
in his Elements (c. 300 BC). It is used in cryptographic computations to ensure the security
of a variety of systems (Wikipedia).

In the sequel, we provide the text of an Eiffel program that contains specification and
implementation for Euclid’s GCD algorithm. The implementation can be checked against the
specification via runtime assertion Checking.ﬂ The use of Hoare logic (via preconditions and
postconditions) was invented at the dawn of software engineering. Design by Contract (DbC)
as implemented in languages such as Eiffel and Ada have taken this conceptual machinery
and made it applicable to large industrial strength software systems.

2.1 Testing can show the presence of bugs, but not their absence

In Fig. [I} Euclid’s algorithm is implemented in Golangf

L Report on the NSE Workshop on Formal Methods for Security, 2016, https://arxiv.org/pdf/16
08.00678.pdfl Italics not in the original.

“See https://github.com/yuselg/3311-W20-Public/tree/master/euclid/code/eiffell

3Try it at https://play.golang.org.

https://arxiv.org/pdf/1608.00678.pdf
https://arxiv.org/pdf/1608.00678.pdf
https://github.com/yuselg/3311-W20-Public/tree/master/euclid/code/eiffel
https://play.golang.org

Greatest Common Divider in Eiffel Page 3 of

// golang
package main

import (
n fmt n
)

// greatest common divisor (GCD) via Euclidean algorithm
// use only addition and subtraction
func gcd(m, n int) int {

X 1= m
y = n
for x !'=y { // while loop
if x <y |
y =y - X
} else {
X = X -y

}

return x

func main () {
fmt.Println(gcd(111, 259))
fmt.Println(gcd (=111, 259))

The statement fmt.Printlin(ged(-111, 259)) is non-terminating. One might add an assert
or defensive programming, neither of which is ideal.

Figure 1: GCD implemented in Go

There is a “while” loop in the code of Fig. [, How sure are we that this implementation
always terminates? If it does terminate, how do we know it always terminates with the
correct result?

We can test the ged(m,n) subroutine. For example, we can provide inputs m := 111 and
n = 259, and then we can check if the output is ged(111,259) = 37.

If we discover an an error in the code, then we can fix it. But here is the concern with
testing alone: Dijkstra: “testing can show the presence of bugs, but not their absence”.

e It does not matter how many tests we run, we can never exhaustively check the cor-
rectness of the algorithm. There are just too many combinations of inputs!

e To write a test, we also need to (manually?) compute the answer, a time consuming
process. For example, to test ged(111,259), we had to first manually compute the GCD

Greatest Common Divider in Eiffel Page 4 of |1_5|

correctly compute greatest common divisor?

gcd(m,n)
37

259

by hand[]

The earlier report (NSF Workshop on Formal Methods for Security) perhaps words it too
strongly, but there is more than a grain of truth to it. Here is further quote from that report:

Formal methods are the only reliable way to achieve security and privacy in com-
puter systems. Formal methods, by modeling computer systems and adversaries,
can prove that a system is immune to entire classes of attacks (provided the as-
sumptions of the models are satisfied). By ruling out entire classes of potential
attacks, formal methods offer an alternative to the “cat and mouse” game between
adversaries and defenders of computer systems.

Formal methods can have this effect because they apply a scientific method. They
provide scientific foundations in the form of precise adversary and system models,
and derive cogent conclusions about the possible behaviors of the system as the
adversary interacts with it. This is a central aspect of providing a science of
security.

For a formal proof Euclid’s algorithm in TLA+, see https://lamport.azurewebsi
tes.net/pubs/euclid.pdf. Tools such as TLA+ has been used at Amazon, Microsoft
and elsewhere.

3 Correctness is relative to a Specification

To judge whether code is correct, we need a specification—this is something different from
the Go implementation in Fig. [1. A specification is the software engineering equivalent of
blue-prints in other engineering disciplines.

In Eiffel, we can specify the GCD algorithm using Design by Contract (DbC), as shown

in Fig.

4GCD is built-in in most programming languages. But we are assuming that, for the sake of illustration,
that we are computing a new function, one for which there is no oracle.

https://lamport.azurewebsites.net/pubs/euclid.pdf
https://lamport.azurewebsites.net/pubs/euclid.pdf

Greatest Common Divider in Eiffel Page 5 of

gcd(m, n: INTEGER): INTEGER
—— return the greatest common divider of m and n
require
m>1An>1 —— at least should not be zero
ensure
gcd_spec: Result = max(divisors(m) N divisors(n))
end

The require clause is a precondition: gcd is a partial function that is not well-defined for
all possible inputs. For example, what is ged(0,0)? So the precondition documents the fact
that a client using this function must check that the precondition is true before calling it.
Without loss of generality, our precondition is m > 1A n > 1.

The ensure clause is a postcondition. It asserts that the function must terminate with this
condition true. But how shall we write this postcondition? In general, for that we need to
define what a GCD is using predicate logic and set theory (with the help of the Mathmodels
library).

e divisors(n) is the set of all divisors of the number 7.
e maz(S) is the maximum of the set of numbers S.

e gcd_spec(m,n) is the GCD of the numbers m and n.
Formally, using set theory and predicate logic, we write

e divisors(q) = {d € 1..q| divides(d,q)}, where divides(d, q) is true if d divides ¢, i.e.

qg mod d = 0.
e gcd_spec(m,n) = max(divisors(m) N divisors(n)).

These specifications can themselves be written in an Eiffel-like form, e.g. max(S) is as
follows:

max (s: SET[INTEGER]): INTEGER
require s # O
ensure (Result € s) A (Vi € s | Result > 1)

Figure 2: Specification of the GCD query in Eiffel

If the GCD query is invoked by a client in a manner that violates the precondition
(e.g. gcd(-111,259)) then this illegal call will automatically terminate with a precondition
violation:

Greatest Common Divider in Eiffel Page 6 of

’ FAILED (1 failed & 2 passed out of 3)

Case Type

’Violation ’ 0 | 0
’ Boolean ’ 2 | 3
’All Cases ’ 2 | 3

Contract Violation
RooT

[PASSED | NONE [t0: Check {EUCLID} divisors(12) = 1,2,3,4,6, 12

tl: {EUCLID}.gcd (111,259) =37
ged (-111,259) results in a precondition violation

FAILED [Precondition violated.

t3: exhaustive testing of ged over 30 x 30
PASSED NONE 50 x 50: 4.0s workbench vs. 0.1s finalized
200 x 200: 1.1s finalized

3.1 Termination and Correctness

But we still need to prove that in the case the client makes a legal call, the GCD query
terminates, and terminates with the correct result (i.e. satisfies the specification).

To prove termination and correctness, we must provide the implementation with a loop
variant (i.e. + y) and loop invariant (i.e. gcd_spec(x,y) = ged_spec(m,n)) as shown in

Fig. 3

4 Hoare Logic

We use the notation of a Hoare triple {Q}S{R} where @ is a precondition, S is a program
statement (i.e. code) and R is a postcondition.

[HT] Hoare Triple {Q}S{R}: Execution of the program statement S begun in
a state satisfying predicate () must (1) terminate, and (2) terminate in a state
satisfying the predicate R.

For example, let S be the assignment statement “z := x — y”. Then we might write
{z > 2y} v := x —y {x > y}. This Hoare Triple (HT) is valid, i.e. execution of x :=x —y
begun in a state satisfying x > 2y is guaranteed to terminate in a state satisfying = > y.

The following HTA (Hoare Triple Assignment) Rule captures this type of logic:

{R|z := exp] N\WD(exp)} z := exp { R} (HTA)

In the above, R[x := exp| is a predicate similar to R, except that all free occurrences of
variables x in R are replaced with expression exp.ﬂ

SProvided there is no illegal capture, see [Tou08|]. This can be extended to simultaneous replacement in
the obvious manner: R[z,y := expl, exp2).

Greatest Common Divider in Eiffel Page 7 of

Figure 3: Specification and implementation of the GCD query in Eiffel
gcd(m, n: INTEGER): INTEGER
—-— return the greatest common divider of m and n
require
m>1An>1 —-— at least should not be zero
local
X, y: INTEGER
do
from
X :1=m; y :=n
invariant
inv: gcd_spec(x,y) = gcd_spec (m,n)
until
X =y
loop
if x < y then
y 1=y - X
else - {y<zasz #y}
X 1= X -y
end
variant x + y
end
check x = y and x = gcd_spec(m,n) end
Result := x
ensure
Result = gcd_spec (m,n)
end

WD(exp) means that exp must be well defined. For example, the expression 1/x is not
well-defined if x = 0; it is a partial function, not a total function. Thus WD(1/z) = z # 0.

In many cases, WD(exp) = true; thus, R[z := exp] A WD(exp) = R[zr := exp]. We
know from elsewhere that R[z := exp] A WD(exp) is the weakest precondition such that
executing = := exp terminates with R true. For simplicity, we will use R[x := exp]| as the
weakest precondition—and, we only mention WD(exp) in a context in which ezp is a partial
function. The proof obligation HPA-PO to show that an assignment satisfies its specification
is as follows:

[HTA-PO]J To prove that the assignment x := exp satisfies the Hoare specification
{Q} z := exp {R}, it suffices to show that Q = Rz := exp].

5 Proof of Termination and Correctness

To understand a loop, and to prove that it terminates correctly, it is crucial to discover a
loop invariant inv (for partial correctness) and loop variant ¢ (an integer valued expression)
for termination. We distinguish between partial correctness, which requires that if an answer
is returned it will be correct, and total correctness, which additionally requires that the

0 O Ul Wi+~ O

—
W= OO

Greatest Common Divider in Eiffel Page 8 of

algorithm terminates (]
This separates the concerns of termination and correctness. There are five proof obliga-
tions; the first three prove partial correctness as shown in Fig[d]

Figure 4: Proof obligations for the termination and correctness of a loop

from 1. {Q} init {inv}: Given the precondition @), show that the loop

{Q} invariant is established initially (before execution of the loop

init begins).

{inv} . . .
until 2. {inv A =B} body {inv}: Show that each execution of the loop

B —— exit condition body preserves the invariant.
loop 3. inv AB = R: On termination (i.e. B holds), the invariant and

{inv A =B} the exit condition entail the postcondition R.

?23% 4. {inv A -B A‘t = To} body {t < .To} where Tp is a constant:
variant t every execution of the loop results in a decrease of the variant t.
end 5. inv A —~B = t > 0: Variant ¢ is bound from below, i.e. every
{inv A B} execution of the loop may never cause the variant to become
{R} negative.

In Fig. [5, we provide the fragment of the GCD code with the loop—annotated with Hoare
assertion conditions (shown in red):
The last two proof obligations show that the loop terminates.

5.1 Prove that the invariant inv is established initially

We must prove (see lines 1-3):

{m>1An>1}
X, y := m, n —— simultaneous assignment

{inv}

By HTA-PO, it is sufficient to prove m > 1 An > 1 = inv[z,y := m,n]. We start with the
consequent:

invlz,y = m,n]

{definition of inv : gcd_spec(x,y) = gcd_spec(m,n) and Leibniz}
(ged_spec(x,y) = ged_spec(m,n))[z,y := m,n]
= {simultaneous assignment gcd_spec(x,y)[z,y := m,n] = gcd_spec(m,n) and Leibniz}
ged_spec(m, n) = ged_spec(m,n)
= {equality}
true
= {propositional logic, strengthening}
m>1An>1 |

6Since there is no general solution to the halting problem, there is no guarantee that we can prove total
correctness. However, loop variants and invariants have often been provided. See [GS93| [Gri85] for deriving
invariants for proof-by-construction.

T T LN~ O

el e el e
N O UL W N~ O O

Greatest Common Divider in Eiffel Page 9 of

Figure 5: Hoare annotations of the the GCD loop
from
{pre(;ondition m>1An> 1}
X, y :=m, n —— simultaneous assignment
{inv}
invariant
inv: gcd_spec(x,y) = gcd_spec(m,n)
until
X =y —— exit condition B
loop
if x < y then
{z <yANinv} y =y - x {inv}
else —— {y<zasz#y}
{y<aninv} x := x — y {inv}
end
variant t: x + y
end
{z =y Ninv}
{x = gcd_spec(m,n)}

5.2 Prove that each iteration of the loop preserves inv

So long as we are in the loop, the negation of the exit condition holds, i.e. x # y. There are
two branches to the conditional:

L {z <y ANinw}y:=y -x {inv}
2. {l/ <x A /1?71/0} X:=X-y {'m’u}

We prove each branch separately.
For the first branch, by HTA-PO, it is sufficient to prove z < y Ainv = invly :=y — x|.
We start with the consequent:

invly ==y — x|

= {definition of inv and Leibniz}
(ged-spec(x,y) = ged-spec(m,n))ly ==y — 7]

= {assignment of free variables and Leibniz}
ged_spec(x,y — x) = ged_spec(m,n)

= {GCD theorem: y > x = gcd_spec(z,y) = ged_spec(z,y — x)}
y > x = (ged_spec(x,y) = ged_spec(m,n))

= {definition of inv and Leibniz}
Y>> = inv |

Greatest Common Divider in Eiffel Page 10 of

The GCD theorem y > x = ged_spec(x,y) = ged_spec(x, y—x) holds because any divisor
of z and y is also a divisor of x and y — x. We need y > z to ensure that WD(gcd(x,y — z)),
so that y —x > 1.

The symmetric GCD theorem is >y = gcd_spec(z,y) = ged_spec(x — y,y). Thus
the second branch of the conditional can be proved symmetrically with the first.

5.3 Prove that exit condition and invariant entails postcondition

If the loop terminates (line 16), it must terminate with the exit condition true and the
invariant must hold (as it has been shown to be preserved by every execution of the loop),
i.e. we know: x =y A inv.

We must now show that line 17 (i.e. z = ged_spec(m,n)) holds. We must thus show that
r=yANinv = x = gcd_spec(m,n).

rT=y N nv

{definition of inv and Leibniz}
=y A ged_spec(z,y) = ged_spec(m,n)
= {z =y and Leibniz}

gcd_spec(x, z) = ged_spec(m,n)
= {GCD Theorem: gcd(x,x) = z, obvious}
x = ged_spec(m,n) [

Finally, by HTA-PO, the following trivially holds:

{x = ged_spec(m,n)}
Result := x
{Result = gcd_spec(m,n)}

We have thus established the postcondition of ged(m,n).
We have used various theorems about GCD in our proofs. We can prove these theorems
using our GCD specification ged_spec(x,y). To take a simple example,

ged(z, x)
= {definition ged_spec(zx,y)}
mazx(divisors(x) N divisors(z))
= {set theory AN A=A}
mazx(divisors(z))
= {definition of divisors}
max({d € 1..z | divides(d,z)}
= {definition of max}

X

Greatest Common Divider in Eiffel Page 11 of

Thus, (Vx > 1: ged(x,x) = x). [|

5.4 Show that the variant decreases in each iteration

Must show that: {inv A =B At = Ty} loop {t < Ty}, where B is the exit condition of the
loop. In the above, T} is an undetermined constant that represents the value of the variant
at the beginning of each iteration. Left as an exercise.

5.5 Show that the variant ¢ is bounded from below

The variant ¢ is the integer expression x + y. So long as we are in the loop, =B holds where
B is the exit condition of the loop. We must thus show that inv A =B = ¢ > 0. The truth
is that we do not need the antecedent. We know that the precondition is + > 1 Ay > 1, so
we can also trivially prove that inv2 :x > 1Ay > 1 is also a loop invariant.

mv2:e > 1Ay >1
= {arithmetic}
r+y>0
= {definition of ¢}
t>0 |

6 Eiffel: Exhaustive Runtime Assertion Checking

There is a “lightweight” method of checking that the proofs hold for a bounded set of inputs,
say me 1..100 A n € 1..100. This is similar to bounded but exhaustive modelchecking.

The Eiffel runtime will automatically check all the assertions of Section [f] In addition,
any time we execute the query ged(m, n), all the contracts will be automatically checked, and
violations will be reported[]] This will provide us with confidence that the loop variant and
invariant are well-posed and that the formal verification is feasible. Even without further
formal verification, this may provide sufficient confidence in the software product beyond
testing.

6.1 Specification Tests

The specification ged_spec(x,y) using Mathmodels is an executable specification (albeit in-
efficient) of the GCD. This specification can thus act as an Oracle in exhaustive testing as
shown in Fig. [0] lines 12-15.

Thus, writing a specification provides a method for writing automated tests beyond that
of unit-testing. These concepts can be transferred over to testing written in other languages

"The Eiffel program text with the specification and implementation is provided at https://github.c
om/yuselg/3311-W20-Public/tree/master/euclid/code/eiffel

https://github.com/yuselg/3311-W20-Public/tree/master/euclid/code/eiffel
https://github.com/yuselg/3311-W20-Public/tree/master/euclid/code/eiffel

O N = I B O I R

Greatest Common Divider in Eiffel Page 12 of

t3: BOOLEAN

Figure 6: Exhaustive Specification Test with Oracle ged_spec (line 15)

local
euclid: EUCLID
gcd, gcd_spec: INTEGER
k: INTEGER —-- iterations
do
comment (t3: exhaustive testing of gcd over 30 x 30)
k := 30 —-- use finalized for larger sets
create euclid
across 1 |..|] k is m loop
across 1 |..| k is n loop
gcd := euclid.gcd (m, n)
gcd_spec := euclid.gcd_spec (m, n)
—-— specification tests
Result := gcd = gcd_spec
check Result end
end
end
end

as well (depending on their “expressivity”). When the software is deployed contract checking
can be turn off for efficiency.

7

Why Design by Contract?

In the program text itself, write specifications (not only implementations).

Documents the contract between client and supplier. See the contract view of the
program text in Fig. []] There is a contract between the client and supplier, each
having obligations and benefits. Loosely coupled objects are guaranteed to interact
correctly with each other as specified in the contract.

Verify that the implementation satisfies the specification.
Exhaustively test software products using Specification Tests.

Executions are raised only when there are contract violations. Avoids code bloat by
eliminating the need for constant defensive programming.

Subcontracting: ensures the Liskov substitution principle so that inheritance is used
correctly.

As stated by Bertrand Meyer, Design by Contract can be used throughout the design
process

8See [Mey97] for his description of Dbc.

Greatest Common Divider in Eiffel Page 13 of

The Eiffel method treats the whole process of software development as a contin-
uum; unifying the concepts behind activities such as requirements, specification,
design, implementation, verification, maintenance and evolution; and working to
resolve the remaining differences, rather than magnifying them.

Formal specification languages look remarkably like programming languages; to
be usable for significant applications they must meet the same challenges: defining
a coherent type system, supporting abstraction, providing good syntax (clear to
human readers and parsable by tools), specifying the semantics, offering modular
structures, allowing evolution while ensuring compatibility.

The same kinds of ideas, such as an object- oriented structure, help on both
sides. Eiffel as a language is the notation that attempts to support this seamless,
continuous process, providing tools to express both abstract specifications and
detailed implementations.ﬂ

8 The Academy and Industry

Security researchers recently disclosed 19 vulnerabilities in a small library designed in the
90s that has been widely used and integrated into countless of enterprise and consumer-grade
products over the last 20 years.

The number of impacted products is estimated at “hundreds of millions” and includes
products such as smart home devices, power grid equipment, healthcare systems, industrial
gear, transportation systems, printers, routers, mobile/satellite communications equipment,
data center devices, commercial aircraft devices, various enterprise solutions, and many oth-
ers[l

From the description in the article, the three most serious vulnerabilities seem to be buffer
overflows. C and C++ can be dangerous languages. For these devices, perhaps we should be
using languages with strong static typing guarantees (e.g. Rust, Ada etc.). Even so, there
is a way to use C safely if we have mastered disciplined programming methods discussed in
this article. Such errors are easily avoidable but new vulnerabilities will continue to be built
into products until programmers change the way they write and verify software.

As pointed out by safety experts, “thousands of development teams have incorporated
these library routines in their products and, unsurprisingly, failed to find the vulnerabilities
in their testing. Yet today, thousands of development teams will continue to resist using
better methods, tools and languages”.

Lesley Lamport writes that engineers draw detailed plans before a brick is laid or a nail
is hammered. Programmers don’t. Can this be why houses seldom collapse and programs
often crash?

Blueprints help engineers and architects to ensure that what they are planning to build
will work. “Working” means more than not collapsing; it means serving the required purpose.
Engineers and their clients use blueprints to understand what they are going to build before

dnttps://bertrandmeyer.com/2014/12/07/lampsort /.
Ohttps://www.zdnet.com/article/ripple20-vulnerabilities-will-haunt-the-iot-
landscape-for-years—to—come/. Accessed 22 June 2020.

https://bertrandmeyer.com/2014/12/07/lampsort/
https://www.zdnet.com/article/ripple20-vulnerabilities-will-haunt-the-iot-landscape-for-years-to-come/
https://www.zdnet.com/article/ripple20-vulnerabilities-will-haunt-the-iot-landscape-for-years-to-come/

Greatest Common Divider in Eiffel Page 14 of

they start building it. But few programmers write even a rough sketch of what their programs
will do before they start coding["]

8.1 Foundational Principles in CS/software engineering education

Our recommendations are threefold, ... First, computer science majors, many of
whom will be the designers and implementers of next-generation systems, should
get a grounding in logic, ... “To designers of complex systems, the need for
formal specs should be as obvious as the need for blueprints of a skyscraper.
(Lesley Lamport)

The methods, tools, and materials for educating students about “formal specs”
are ready for prime time. Mechanisms such as “design by contract,” now available
in mainstream programming languages, should be taught as part of introductory
programming, as is done in the introductory programming language sequence at
Carnegie Mellon University. --- We are failing our computer science majors if we
do not teach them about the value of formal specifications[?]

References

[Gri85] David Gries. The Science of Programming. Springer-Verlag, 1985.

[GS93] David Gries and Fred B. Schneider. A Logical Approach to Discrete Math. Springer
Verlag, 1993.

[Mey97] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.

[Tou08] George Tourlakis. Mathematical Logic. Wiley, 2008.

A Contract View of class EUCLID for GCD

Uhttps://channel9.msdn.com/Events/Build/2014/3-642. Lesley Lamport is the author of
TLA+ and winner of the Turing Award in 2013: https://amturing.acm.org/award winners/lam
port_1205376.cfm.

4 “Teach Foundational Language Principles”, Thomas Ball and Benjamin Zorn, Communications of the
ACM, May 2015, Vol. 58 No. 5, Pages 30-31. https://cacm.acm.org/magazines/2015/5/186023
-teach-foundational-language-principles/fulltextl

Thomas Ball (tball@microsoft.com) is a principal researcher and co-manager of the Research in Software
Engineering (RiSE) group at Microsoft Research, Redmond, WA. Benjamin Zorn (zorn@microsoft.com) is
a principal researcher and co-manager of the Research in Software Engineering (RiSE) group at Microsoft
Research, Redmond, WA.

https://channel9.msdn.com/Events/Build/2014/3-642
https://amturing.acm.org/award_winners/lamport_1205376.cfm
https://amturing.acm.org/award_winners/lamport_1205376.cfm
https://cacm.acm.org/magazines/2015/5/186023-teach-foundational-language-principles/fulltext
https://cacm.acm.org/magazines/2015/5/186023-teach-foundational-language-principles/fulltext

Greatest Common Divider in Eiffel Page 15 of

Figure 7: Contract View of class EUCLID

class EUCLID feature

gcd (m, n: INTEGER): INTEGER

\ \ \ \

—— return the gcd of '‘m' and '‘n
require

non_zero: m > 1 and n >= 1
ensure —- Result = maz(divisors(m) N divisors(n))

gcd_spec: Result = max(divisors(m) |/\| divisors(n))
feature - gcd-spec

divisors (n: INTEGER): SET [INTEGER]
—— return set of divisors of ‘g‘

require
n >= 1
ensure —- Result ={d € 1..q|is_divisible(q,d)}
divisors_set: Result ~ (range (1, n) | agent is_divisible (n, ?))

gcd_spec (m, n: INTEGER): INTEGER
—— specification definition of gcd

ensure
Result = max (divisors (m) |/\| divisors (n))
max (s: SET [INTEGER]): INTEGER
require
not s.is_empty
ensure —- (Result € s) A (Vi € s| Result > 1)

contains: s.has (Result)
is_max: across s is i1 all Result >= i end
end

	Significance of Specifications and Formal Methods
	Example: Specifying and verifying Euclid's algorithm
	Testing can show the presence of bugs, but not their absence

	Correctness is relative to a Specification
	Termination and Correctness

	Hoare Logic
	Proof of Termination and Correctness
	Prove that the invariant inv is established initially
	Prove that each iteration of the loop preserves inv
	Prove that exit condition and invariant entails postcondition
	Show that the variant decreases in each iteration
	Show that the variant t is bounded from below

	Eiffel: Exhaustive Runtime Assertion Checking
	Specification Tests

	Why Design by Contract?
	The Academy and Industry
	Foundational Principles in CS/software engineering education

	Contract View of class EUCLID for GCD

