
8 COMMUNICATIONS OF THE ACM | MAY 2017 | VOL. 60 | NO. 5

Follow us on Twitter at http://twitter.com/blogCACM

The Communications Web site, http://cacm.acm.org,
features more than a dozen bloggers in the BLOG@CACM
community. In each issue of Communications, we’ll publish
selected posts or excerpts.

The problem is particularly acute
in object-oriented programming lan-
guages, where x.f is the major com-
putational mechanism. Every single
execution of this construct (how
many billions of them occurred in
running programs around the world
since you started reading this?)
faces that risk. Compilers for many
languages catch other errors of a
similar nature—particularly type
errors, such as assigning the wrong
kind of value to a variable—but they
do nothing about prohibiting null
pointer dereferencing.

This fundamental brittleness threat-
ens the execution of most programs
running today. Calling it a “billion-
dollar mistake” as Tony Hoare did1 is
not an exaggeration. In his recent Ph.D.
thesis2, Alexander Kogtenkov surveyed
the null-pointer-derefencing bugs in
the Common Vulnerabilities and Expo-
sures (CVE) database, the reference re-
pository of information about Internet
attacks. The resulting chart, showing
the numbers per year, is edifying:

Beyond the numbers stand real ex-
amples, often hair-raising. The descrip-
tion of vulnerability CVE-2016-9113
(http://bit.ly/2mafdkJ) states:

There is a NULL pointer deref-
erence in function imagetobmp of
convertbmp.c:980 of OpenJPEG 2.1.2.
image->comps[0].data is not assigned a
value after initialization(NULL). Impact
is Denial of Service.

Yes, that is for the JPEG standard.
Try not think of it when you upload
your latest pictures. Just for one month
(November 2016), the CVE database
contains null pointer vulnerabilities
affecting products of the Gotha of the
IT industry, from Google (http://bit.
ly/2mfdAD2) and Microsoft (http://
bit.ly/2muJImD) (“theoretically every-
one could crash a server with just a sin-
gle specifically crafted packet”) to Red
Hat (http://red.ht/2lXB5xS) and Cisco
(http://bit.ly/2mMcueo). The entry
for an NVIDIA example (at http://bit.
ly/2lUREf8) explains:

For the NVIDIA Quadro, NVS, and Ge-
Force products, NVIDIA Windows GPU
Display Driver R340 before 342.00 and
R375 before 375.63 contains a vulner-
ability in the kernel mode layer (nvldd-
mkm.sys) handler where a NULL pointer
dereference caused by invalid user input
may lead to denial of service or potential
escalation of privileges.

We keep hearing complaints that
“the Internet was not designed with
security in mind.” What if the problem
had far less to do with the design (TCP/
IP is brilliant) than with the languages
that people use to write tools imple-
menting these protocols?

In Eiffel, we decided that the situ-
ation was no longer tolerable. After
the language had eradicated unsafe
casts through the type system, memory

Bertrand Meyer
Null-Pointer Crashes,
No More
 http://bit.ly/2i6w0nz
December 20, 2016

As an earlier article5 em-
phasized, code matters; so do program-
ming languages. While Eiffel is best
known for its Design by Contract tech-
niques, they are only part of a systematic
design all focused on enabling develop-
ers to realize the best of their abilities—
and eradicate from their code the sourc-
es of crashes and buggy behavior.

Talking about sources of crashes,
one of the principal plagues of modern
programs is null-pointer dereferencing.
This term denotes what happens when
you call x.f, meaning apply f (a field ac-
cess or an operation) to the object that x
references. If you want to define mean-
ingful data structures, you need to allow
“null,” also known as Nil and Void, as
one of the possible values for reference
variables (for example, to terminate
linked structures: the “next” field of the
last list element must be null, to indi-
cate there is no next element). But then
you should make sure that x.f never gets
called for null x, since there is in that
case no object to which we can apply f.

Ending Null
Pointer Crashes
Void safety, says Bertrand Meyer, relies on
type declarations and static analysis.

DOI:10.1145/3057284 http://cacm.acm.org/blogs/blog-cacm

http://bit.ly/2mafdkJ
http://bit.ly/2mfdAD2
http://bit.ly/2mfdAD2
http://bit.ly/2muJImD
http://bit.ly/2muJImD
http://red.ht/2lXB5xS
http://bit.ly/2mMcueo
http://bit.ly/2lUREf8
http://bit.ly/2lUREf8
http://dx.doi.org/10.1145/3057284

MAY 2017 | VOL. 60 | NO. 5 | COMMUNICATIONS OF THE ACM 9

blog@cacm

management errors through garbage
collection and data races through the
SCOOP concurrency mechanism, null
pointer dereferencing was the remain-
ing dragon to slay. Today Eiffel is void-
safe: a null pointer dereference can
simply not happen. By accepting your
program, the compiler guarantees that
every single execution of every single x.f
will find x attached to an actual object,
rather than void.

How do we do this? I am not going
to describe the void-safe mechanism
in detail here, referring instead to the
online documentation6, with the warn-
ing it is still being improved. But I can
give the basic ideas. The original article
describing void safety (and giving cred-
it to other languages for some of the
original ideas) was a keynote at ECOOP
in 20053. Revisiting the solution some
years later, I wrote4:

Devising, refining, and documenting
the concept behind the mechanism pre-
sented here took a few weeks. The engi-
neering took four years.

That was optimistic. Seven more
years later, the “engineering” con-
tinues. It is not a matter of ensuring
void safety; the mechanism was essen-
tially sound from the beginning. The
continued fine-tuning has to do with
facilitating the programmer’s task.
Any mechanism that avoids bugs—an-
other example is static typing—buys
safety and reliability at a possible
cost in expressiveness: you have to
prohibit harmful schemes (otherwise
you would not avoid any bugs), but
you do not want to prohibit useful
schemes or make them too awkward
to express (otherwise it is very easy to
remove bugs: just reject all programs!)
or make them too awkward to express.
The “engineering” consists of ever
more sophisticated static analysis,
through which the compiler can ac-
cept safe cases that simplistic rules
would reject.

In practice, the difficulty of fine-
tunign void safety mostly involve the
initialization of objects. While the de-
tails of void safety can be elaborate,
the essential idea is simple: the mech-
anism relies on type declarations and
static analysis.

The void-safe type system introduc-
es a distinction between “attached”
and “detachable” types. If you declare
a variable p1 as just of type (for exam-

ple) PERSON it can never be void: its
value will always be a reference to an
object of that type; p1 is “attached.”
This is the default. If you want p2 to ac-
cept a void value you will declare it as
detachable PERSON. Simple compile-
time consistency rules support this
distinction: you can assign p1 to p2,
but not the other way around. They
ensure an “attached” declaration is
truthful: at runtime, p1 will always be
non-void. That is a formal guarantee
from the compiler.

The static analysis produces more
such guarantees, without particular ac-
tions from the programmers as long as
the code is safe. For example, if you write

if p2 /= Void then p2.f end

we know that things are OK. (Well, un-
der certain conditions. In concurrent
programming, for example, we must
be sure that no other thread running in
parallel can make p2 void between the
time we test it and the time we apply f.
The rules take care of these conditions.)

The actual definition cannot, of
course, say that “the compiler” will
recognize safe cases and reject unsafe
ones. We cannot just entrust the safety
of our program to the inner workings
of a tool (even open-source tools like
the existing Eiffel compilers). Besides,
there is more than just one compiler. In-
stead, the definition of void safety uses a
set of clear and precise rules, known as

Certified Attachment Patterns (CAPs),
which compilers must implement. The
preceding example is just one such CAP.
A formal model backed by mechanized
proofs (using the Isabelle/HOL proof
tool) provides2 solid evidence of the
soundness of these rules, including the
delicate parts about initialization.

Void safety has been here for several
years, and no one who has used it wants
to go back. (The conversion to voided
safety of older, non-void-safe projects is
not as painless.) Writing void-safe code
quickly becomes second nature.

And what about your code: are you
certain it can never produce a null-
pointer dereference?

References
1. Hoare, C.A.R., Null References: The Billion-Dollar

Mistake, August 25, 2009, http://bit.ly/2lAhgeP
2. Kogtenkov, A., Void Safety, ETH Zurich Ph.D. thesis,

January 2017, http://se.inf.ethz.ch/people/kogtenkov/
thesis.pdf.

3. Meyer, B., Attached Types and their Application
to Three Open Problems of Object-Oriented
Programming, in ECOOP 2005 (Proceedings
of European Conference on Object-Oriented
Programming, Edinburgh, 25-29 July 2005), ed.
Andrew Black, Lecture Notes in Computer Science
3586, Springer, 2005, pages 1-32, http://bit.ly/2muJ8Ff

4. Meyer, B., Kogtenkov, A., and Stapf, E.: Avoid a Void: The
Eradication of Null Dereferencing, in Reflections on the
Work of C.A.R. Hoare, eds. C. B. Jones, A.W. Roscoe and
K.R. Wood, Springer, 2010, pages 189-211,
http://bit.ly/2lsNfN0

5. Meyer, B., Those Who Say Code Does Not Matter,
CACM, April 15, 2014, http://bit.ly/1mNqout

6. Void safety documentation at eiffel.org:
http://bit.ly/2lsS2xZ

Bertrand Meyer is a professor of software engineering at
Politecno di Milano and Innopolis University.

© 2017 ACM 0001-0782/17/05 $15.00

Null pointer issues (such as null pointer dereferencing) in Common Vulnerabilities and
Exposures Database.

2000 2002 2004 2006 2008 2010 2012 2014 2016

10

20

30

40

50

60

70

80

10-Year average

N
u

m
b

er
 o

f
n

u
ll

-p
oi

n
te

r
is

su
es

Collected by Alexander Kogtenkov
from MITRE’sCVE® database

