EIFFEL SOFTWARE

Eiffel Loops & lteration

16 MAY 2018

SUMMARY

GENERALLY TTERABLE THINGS

ACROSS LOOP - BASICS

ACROSS LOOP - TINDEXING

ACROSS LOOP - REVERSING

ACROSS LOOP — SKIPPING

ACROSS LOOP - ARRAY

ACROSS LOOP - HASH TABLE

ACROSS & FROM TOGETHER

SUMMARY

There are two basic looping mechanisms available in Eiffel:

e The across loop

e The from loop

We will look at various forms of the across loop first and then the from loop

afterwards.

GENERALLY ITERABLE THINGS

In Eiffel, many classes (and their objects) are ITERABLE [G]. Using the “Class
tool” 1in EiffelStudio, a look at the Descendants of class ITERABLE [G] is

revealing. We can get a sense of just how many things can be iterated over.

cioss
DO R VTA e el el e % 4@ |
Descendants of class ITERABLE
A Class
B & ITERABLE [3]
E @ ARGUMENTS
@ APPLICATION
@ ARGUMENTS 32
E & INDEXABLE ITERATION CURSOR [G]
= @ TYPED INDEXABLE ITERATICN CURSCR [G, H —> READABLE INDEXABLE [G]]
= @ GENERAL SPECIAL ITERATION CURSCR [G, H —> READABLE INDEXABLE [G]]
@ ARRAYED LIST ITERATICN CURSCR [G]
@ ARRAY ITERATION CURSCR [G]
@ SPECIAL. ITERATION CURSOR [5]
@ STRING 32 ITERATICN CURSCR
@ STRING 8 _ITERATICN CURSCR
E @ READAELE INDEXABLE ITERATION CURSCR [G]
@ HASH TABLE ITERATION CURSOR [G, K -> detachable HASHABLE]
E @ LINEKED LIST ITERATION CURSOR [G]
@ TWO WAY LIST ITERATICN CURSOR [G]
E & READABLE INDEXABLE [G]
El @ HASH_TABLE [G, R —> detachable HASHRABLE]
@ CLASS NAME TRANSLATICNS
@ MISMATCH INFORMATION
@ SED OBJECTS_ TABLE
@ STRING TAEBLE [G]
B @ INDEXABLE [G, H -> INTEGER 32]
E @ ARRAY [3]
@ ARRAY2 [3]
E & CHAIN [G]
H & CIRCULAR [G]
E @ DYNAMIC CIRCULAR [G]
@ ARRAYED CIRCULAR [G]
El @ LINKED CIRCULAR [5]
@ TWO WAY CIRCULAR [G]
= % DYMEMIC CHAIN [G]
@ DYNAMIC CIRCULAR [G]..-
E @ DYNAMIC LIST [G]
El @ ARRAYED LIST [G]
@ ARRAYED SET [G]
E @ ARRAYED STACR [G]
@ BOUNDED STACEK [G]
@ FIXED LIST [G]
= @ INTERACTIVE LIST [G]
@ ACTION SEQUENCE [EVENT DATA -> detachable TUPLE create dsfault creat...
@ ACTIVE LIST [G]
@ Class & Feature =] Outputs [ErrorList - AutoTest Results

NOTE: The [G] 1in ITERABLE [G] 1is referred to as a Generic. It represents the
type of the objects in the ITERABLE container.

Tables, arrays, cursors, lists, chains, and strings are among the many things
we can ‘iterate over. If you want to know if you can iterate over one of your

objects, use the Class Tool to see if it dinherits from ITERABLE [G].

ACROSS LOOP - BASICS

We want to iterate an INTEGER value from 1 to 10 and print the value to the
console with each iteration. Refer to lines 15, 16, and 17 (the across loop)

of the code below:

A "loop variable”

A thing that is ITERABLE [G] J References the ITERABLE
object (to the lef)

[Start of the loop J
12 make

13 imple across loop amplf;ﬁﬁﬁﬁgﬁﬁf
14

15 acrossil [..| lDiasiicﬁlcopi

16 print (ic.item.ocut + "$N")

17 ' end
18
19 end

End of the loop]

Let’s break this down so we can sufficiently understand what the Eiffel

compiler “sees” (i.e. learn to “Think like our compiler”).

The across loop needs “something” to go “across” — that is — diterate over. The
Eiffel compiler sees the across keyword and then looks for a “something” that
is ITERABLE. In the example above, the Compiler sees the notation 1 [|..| 1D
as a type of INTEGER_INTERVAL, which is a type of ITERABLE [G] object (thanks
to Multiple Inheritance).

|Ancestors of class INTEGER_INTERVAL

& (lass

£ @ INTEGER INTERVAL
= & INDEXABLE [G, H -> INTEGER 32]
= @ READABLE INDEXAELE [G]

& ITERABLE [G]

In this case, the cursor object will have ten INTEGER qitems with values 1 to

10. A reference to the object is held in the loop variable named “ic”.

https://www.eiffel.org/files/doc/static/18.01/libraries/base/iterable_chart.html

The loop keyword marks the start of the loop cycle and the end keyword marks
the end. Within the loop, we can reference the current item being iterated by
referencing the object.item (e.g. dic.item will be 1,2,3 ... 10 as the loop

advances).

The across loop code (above) will produce the following console results:

™

[N =9

e

=]

to finish the exXecution...

NOTE: With an across loop, there is no need to write code to manually advance
from item to item. The Eiffel compiler creates code to advance automatically

at the end of the loop.
Given the output above, we want to lastly understand the call to “print”.

print (ic.item.out + "&N"}

The print feature' takes a STRING object and outputs its contents to the
console. The code “ic.item” references the current item being iterated in the
loop (e.g. INTEGERs 1 to 10). The additional dot-call to “out” transforms (or

m

casts) the INTEGER as a STRING and the + "%M" concatenates a newline

character to the end of the STRING.

ACROSS LOOP - INDEXING

Because Eiffel 1is iterating over an ITERABLE object, we have access to a
number of interesting features of this class as we iterate. One such feature
is the “cursor_index” feature. In practice, it looks something like this (line

#52):

! See the chart for class ANY, specifically the “print” feature.

https://www.eiffel.org/files/doc/static/18.01/libraries/base/any_chart.html

A "loop variable”

A thing that is ITERABLE [G]] References the [TERABLE
object (to the left)

[Start of the loop]

~

5k acrossf"?iii 1s my E:rin;"fasiic;loopé
52 print (ic.cursor index.out + ": ")
= @20 print (ic.item.out + "3H")

54 ‘end !

\F End of the loop]

In this example, we are iterating the CHARACTERs 1in the STRING. We want to

print not only each CHARACTER, but what position that character holds as an
INTEGER in the STRING. The console output will appear like this:

™

[N I =9

[=3]

D =l

5

b= R

]+

Press Return to finish the e

Notice—as the loop 1iterates each CHARACTER, it 1is keeping track of an INTEGER

index value. We reference this index value with a call to ic.cursor_index .

NOTE: The cursor_index feature may not be available on every item container.
In the example above, we were able to access the feature because a STRING 1is a

Client of INDEXABLE_ITERATION_CURSOR through STRING_8_ITERATION_CURSOR.

ACROSS LOOP - REVERSING

Many ITERABLE objects can be reversed (i.e. iterate them in reverse order).
For example: We want to iterate from 10 to 1 instead of 1 to 10. A quick

modification to our previous example will show how to do this:

A "loop variable"

References the ITERABLE

A thing that is ITERABLE [G]] [Reverses the new cursor
object (to the left)

[Creaie anew ITERABLE cursorJ

[Start of the loop]

47 across ({1 |..| lD)i.inew_cursorf.;reversed; as: icé
4@ 00000 Print (ic.item.out + "&N") 77777
49 ‘end !

In this code, we still have the 1 |..| 10 construct. To reverse it, we do the

following:

e Enclose the construct in parenthesis. This tells the editor that we are
now dealing with the “1 |..| 10” ditem as a object reference and we can
now perform dot-calls with auto-complete.

e Append a call to “.new_cursor” which creates a brand new cursor that we
can reverse.

e Append a call to “.reversed” to reverse the order of the ditems in the

resulting “new_cursor?”.

That’s 1it! Our code now traverses the items 1 to 10 in new cursor where the

items are 10 to 1 instead.

The resulting console output looks as one expects:

=]

[=]

Kl
1

ress Return to finish the execution...g

We may also reverse the cursor using the alias notion of the “reversed”

feature. The code looks like:

A thing that is ITERABLE [G]]

[Creaie anew ITERABLE cursor]

[Reversed using "alias” notation

)

acress.—ii(l |..| 1l0).new cursorias ic leoeop
print (ic.cursor index.out + ": ")
print (ic.item.out + "%HN")

end

This is based on the alias notation in INDEXABLE_ITERATION_CURSOR.reversed

reversed alias "-": INDEXABLE ITERATION CURSCR [G]
—— Reversed cursor of the iteration.

ACROSS LOOP - SKIPPING

The across loop is simple and elegant. We can iterate forward and in reverse.
We can also skip over objects. For example: We might want to print out every
3rd item. To do this, we simple add a “+ value” to our ITERABLE thing, like

this:

A "loop variable”

A thing that is ITERABLE [G] 1[Smpszhemsaﬁeread1cuw9ﬂ11 References the ITERABLE
J object (to the lefi)

tart of the loop]

47 across (1l |..| 10).new_

4 i:n]:ir:‘. (1c.item.out

49 : end

5

51 nlcroi End of the loop I_:ufsﬁf_:*-‘:&rj&i + 2 as ic loop
32 E + THNHY)

23 end

S4

35 across ("This is my string").new cursor + 2 as ic loop
36 print (ic.cursor_index.ocut + ": ")

57 print (ic.itam.out + "&N")

58 end

The resulting console output is:

il
1
1

[N I =9

h

urn to finish the

Notice—in each across loop (above), we declare the ITERABLE thing (e.g. 1 |..|
10) and then reference a call to “.new_cursor”. The notation of “+ 2” dis then
applied to the result of new_cursor, causing that ITERABLE thing to start on
an item, skip 2, and land on the next item (e.g. 1 .. 4 .. 7 .. 10).

Not only can we “increment” (e.g. “+ n”), we may also “decrement” (e.g. “-

n”). In the case of READABLE_INDEXABLE_ITERATION_CURSOR objects, we can use

the “+” and “-” notation as an “alias” for calls to “incremented” and

“decremented”.
55 across ("This is my string").new cursori + 2ias ic loop
56 print (ic.cursor_index.out + "tﬁﬁrﬂ
57 print (ic.item.out + "EN").-"
58 end An alias reference to ..]

READABLE_INDEXABLE_ITERATION_CURSGR

T4 incrementedialias "+" {(n: like step): like Current
75 -- <Precursor>

76 do

T Result := twin

78 Result.set step (step + n)

759 end

ACROSS LOOP - ARRAY

A typical application of the across loop is to apply it to an ARRAY or
ARRAYED_LIST. In the example below, we will compute an average score from a

list of scores (tests, games, or whatever).

makes
note
goal: ™[

Compute an average score from a list.

[What we iterate "across”] I

local

1 scores: ARBAY [INTEGER] [Manifest ARRAY of "scores”]
1 sum: INTEGER

average scors: REAL 64

across ! [Each score = ic.item]

print (ic.cursor index.out + ": ")
print (ic.item.out + "%N")

end
1 average score := 1 sum / 1 scores.count
print ("Sum: " + 1 sum.ocut + "3N")

print ("Average: + 1 average score.out + "HN")

end

We first generate a list of individual “scores” from which we compute an
average. We use an Eiffel “manifest array” to create an ARRAY [INTEGER]
object.

The “1_scores” local object variable is given to the across loop to iterate

over. Once the loop 1is complete, we output both the computed sum and average.

The output tells the entire story:

ACROSS LOOP - HASH TABLE

Another common application of the across loop is applied to HASH_TABLE [G, K].

The HASH_TABLE stores key-value pairs that we can access easily in an across

loop.
12 make
13 note
14 goal: ™[
15 Generate a list of employses namss and numbers
16 [
17 local
18 1l employees: HASH TRBLE [STRING, INTEGER]
13 do
20 c.rea.tel_empl-:yeesmake{3} """""" [Create and load the hash table -J
21 ;l_emplmyees.put ("FRANE", 1&&1ﬂ
22 il_emplmyees.put ("FRED™, 1002)
23 El_emplmyees.put ("FRITA", 1&&3ﬂ
24 ‘across!l_employees as ic loop
23 [}c.curs@r_lndex.out o L L |

L What we iterate "across” |

28 end
29 end

The items "value" (i.e.
employee name)

The items "key” (i.e.
employee number)

The first task is to create and load the HASH_TABLE with values and keys. Once

the table is loaded, we can then traverse across the table, accessing the keys

(i.e. ic.key) and values (ic.item). The console output is as we expect:

ution...

ACROSS & FROM TOGETHER

The notation of across and from can be combined for extra readability. For
either the across or the from, the “loop” construct is defined by the loop and
end keywords. Only the code between loop and end will be executed for each
iteration. The across and from keywords simply provide the compiler with

direction on how to construct the loop 1in generated C/C++.

In the configuration below, the from clause is being used to clearly state
preparation of certain variables having to do with the loop before the loop s

executed. This is a “setup phase” in preparation to execute the loop.

Also of note are the {invariant and variant clauses.

12 make

13 note

14 goals [

xoiiz Compute an average score from a list.
Local variable for "variant” 1"

17

18 res: ARRAY [INTEGER]

19 1_sum, v

20 1l average_score: REAL &4 The "from™ clause can be
23 do used to "prepare” variables
2z I seeres p=i&E3: 8 B Ts O associated with the loop

across before the loop executes.

This is for readability.

Sets the variant like a "count-
down” value (in this
example).

1 scores as ic

States the condition that must
hold True for each iteration of
the loop.

5] H=h 0}

1l scores.count

27
28
29
30
31 (ic.cursor_index.out + ": ")

Code to decrement the
variant. This can be whatever
you want.

(ic.item.out + "%N")
:= 1 sum + ic.item

35

Provides a mechanism
against "endless loops” (e.g.

] 1 average_score := 1 sum / 1 scores.count
v cannot go below 0).

print ("Sum: " + 1 sum.cut + "%N")

o

Average: " + 1 average score.out + "%N")

40 print
41 end

The dinvariant clause (or “loop invariant”) is a Design by Contract mechanism
which provides a set of BOOLEAN predicates stating what must hold True before

and after each iteration over the loop.

