
EIFFEL SOFTWARE

Eiffel Loops & Iteration

16 MAY 2018

SUMMARY

GENERALLY ITERABLE THINGS

ACROSS LOOP - BASICS

ACROSS LOOP - INDEXING

ACROSS LOOP - REVERSING

ACROSS LOOP - SKIPPING

ACROSS LOOP - ARRAY

ACROSS LOOP - HASH TABLE

ACROSS & FROM TOGETHER

SUMMARY
There are two basic looping mechanisms available in Eiffel:

● The ​across​ ​loop

● The ​from ​loop

We will look at various forms of the across loop first and then the from loop

afterwards.

GENERALLY ITERABLE THINGS
In Eiffel, many classes (and their objects) are ​ITERABLE ​[G]​. Using the “Class

tool” in EiffelStudio, a look at the Descendants of class ​ITERABLE ​[G]​ is

revealing. We can get a sense of just how many things can be iterated over.

NOTE: The ​[G]​ in ​ITERABLE ​[G]​ is referred to as a Generic. It represents the

type of the objects in the ​ITERABLE ​container.

Tables, arrays, cursors, lists, chains, and strings are among the many things

we can iterate over. If you want to know if you can iterate over one of your

objects, use the Class Tool to see if it inherits from ​ITERABLE ​[G]​.

ACROSS LOOP - BASICS
We want to iterate an ​INTEGER ​value from 1 to 10 and print the value to the

console with each iteration. Refer to lines 15, 16, and 17 (the across loop)

of the code below:

Let’s break this down so we can sufficiently understand what the Eiffel

compiler “sees” (i.e. learn to “Think like our compiler”).

The ​across​ loop needs “something” to go “across” — that is — iterate over. The

Eiffel compiler sees the ​across​ keyword and then looks for a “something” that

is ​ITERABLE​. In the example above, the Compiler sees the notation

as a type of ​INTEGER_INTERVAL​, which is a type of ​ITERABLE ​[G]​ object (thanks

to Multiple Inheritance).

In this case, the cursor object will have ten ​INTEGER​ items with values 1 to

10. A reference to the object is held in the loop variable named “ic”.

https://www.eiffel.org/files/doc/static/18.01/libraries/base/iterable_chart.html

The ​loop​ keyword marks the start of the loop cycle and the ​end​ keyword marks

the end. Within the loop, we can reference the current item being iterated by

referencing the object.item (e.g. ic.item will be 1,2,3 ... 10 as the loop

advances).

The ​across​ loop code (above) will produce the following console results:

NOTE: With an ​across​ loop, there is no need to write code to manually advance

from item to item. The Eiffel compiler creates code to advance automatically

at the end of the loop.

Given the output above, we want to lastly understand the call to “print”.

The print feature takes a ​STRING ​object and outputs its contents to the 1

console. The code “ic.item” references the current item being iterated in the

loop (e.g. ​INTEGER​s 1 to 10). The additional dot-call to “out” transforms (or

casts) the ​INTEGER​ as a ​STRING​ and the concatenates a newline

character to the end of the ​STRING​.

ACROSS LOOP - INDEXING
Because Eiffel is iterating over an ​ITERABLE​ object, we have access to a

number of interesting features of this class as we iterate. One such feature

is the “cursor_index” feature. In practice, it looks something like this (line

#52):

1 See the chart for class ​ANY​, specifically the “print” feature.

https://www.eiffel.org/files/doc/static/18.01/libraries/base/any_chart.html

In this example, we are iterating the ​CHARACTER​s in the ​STRING​. We want to

print not only each ​CHARACTER​, but what position that character holds as an

INTEGER​ in the ​STRING​. The console output will appear like this:

Notice—as the loop iterates each ​CHARACTER​, it is keeping track of an ​INTEGER

index value. We reference this index value with a call to .

NOTE: The cursor_index feature may not be available on every item container.

In the example above, we were able to access the feature because a ​STRING​ is a

Client ​of ​INDEXABLE_ITERATION_CURSOR​ through ​STRING_8_ITERATION_CURSOR​.

ACROSS LOOP - REVERSING
Many ITERABLE objects can be reversed (i.e. iterate them in reverse order).

For example: We want to iterate from 10 to 1 instead of 1 to 10. A quick

modification to our previous example will show how to do this:

In this code, we still have the 1 |..| 10 construct. To reverse it, we do the

following:

● Enclose the construct in parenthesis. This tells the editor that we are

now dealing with the “1 |..| 10” item as a object reference and we can

now perform dot-calls with auto-complete.

● Append a call to “.new_cursor” which creates a brand new cursor that we

can reverse.

● Append a call to “.reversed” to reverse the order of the items in the

resulting “new_cursor”.

That’s it! Our code now traverses the items 1 to 10 in new cursor where the

items are 10 to 1 instead.

The resulting console output looks as one expects:

We may also reverse the cursor using the alias notion of the “reversed”

feature. The code looks like:

This is based on the alias notation in ​INDEXABLE_ITERATION_CURSOR​.reversed

ACROSS LOOP - SKIPPING
The across loop is simple and elegant. We can iterate forward and in reverse.

We can also skip over objects. For example: We might want to print out every

3rd item. To do this, we simple add a “+ value” to our ITERABLE thing, like

this:

The resulting console output is:

Notice—in each across loop (above), we declare the ​ITERABLE ​thing (e.g. 1 |..|

10) and then reference a call to “.new_cursor”. The notation of “+ 2” is then

applied to the result of new_cursor, causing that ​ITERABLE ​thing to start on

an item, skip 2, and land on the next item (e.g. 1 .. 4 .. 7 .. 10).

Not only can we “increment” (e.g. “+ n”), we may also “decrement” (e.g. “-

n”). In the case of ​READABLE_INDEXABLE_ITERATION_CURSOR ​objects, we can use

the “+” and “-” notation as an “​alias​” for calls to “incremented” and

“decremented”.

ACROSS LOOP - ARRAY
A typical application of the ​across ​loop is to apply it to an ​ARRAY ​or

ARRAYED_LIST​. In the example below, we will compute an average score from a

list of scores (tests, games, or whatever).

We first generate a list of individual “scores” from which we compute an

average. We use an Eiffel “manifest array” to create an ​ARRAY ​[​INTEGER​]

object.

The “l_scores” local object variable is given to the ​across ​loop to iterate

over. Once the loop is complete, we output both the computed sum and average.

The output tells the entire story:

ACROSS LOOP - HASH TABLE
Another common application of the ​across ​loop is applied to ​HASH_TABLE ​[G, K]​.

The ​HASH_TABLE ​stores key-value pairs that we can access easily in an ​across

loop.

The first task is to create and load the ​HASH_TABLE ​with values and keys. Once

the table is loaded, we can then traverse ​across ​the table, accessing the keys

(i.e. ic.key) and values (ic.item). The console output is as we expect:

ACROSS & FROM TOGETHER
The notation of ​across ​and ​from ​can be combined for extra readability. For

either the ​across ​or the ​from​, the “loop” construct is defined by the ​loop ​and

end ​keywords. Only the code between ​loop ​and ​end ​will be executed for each

iteration. The ​across ​and ​from ​keywords simply provide the compiler with

direction on how to construct the loop in generated C/C++.

In the configuration below, the ​from ​clause is being used to clearly state

preparation of certain variables having to do with the ​loop ​before the ​loop ​is

executed. This is a “setup phase” in preparation to execute the ​loop​.

Also of note are the ​invariant ​and ​variant ​clauses.

The invariant clause (or “loop invariant”) is a ​Design by Contract​ mechanism

which provides a set of ​BOOLEAN ​predicates stating what must hold ​True ​before

and after each iteration over the ​loop​.

